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Introduction

Irregular sudden fluctuations in metro passenger demand during events or incidents can lead
to critical supply or safety issues. However, forecasting abnormal metro passenger demand is
challenging due to the absence of periodicity, high volatility, scarce samples, and the need for
early warnings. We address abnormal metro passenger demand forecasting by leveraging the
long‐range Alighting‐Boarding (AB) correlation driven by chained travel behavior. We found that
leveraging the AB correlation enables early warnings of abnormal demand with up to a 5‐hour
lead time (depending on the activity duration), offering an effective abnormal demand warning
solution that does not rely on auxiliary event data.
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(a) Guangzhou Tianhe Sports Center Metro Station
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(b) Seoul Sports Complex Metro Station
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Figure 1. Passenger flow of two metro stations. Remarkably, a noticeable peak in abnormal alighting flow
consistently precedes each peak in abnormal boarding flow.

Research highlights

We argue that the alighting‐boarding (AB) correlation should always be used for metro
passenger demand forecasting. We show the salient effect of AB correlation in enhancing
demand forecasting, particularly for early warming of abnormal boarding demand.
We propose ABTransformer, a forecasting model that explicitly models the AB correlation
with a bi‐channel attention mechanism while maintaining explainability.
We explore uncertainty quantification in metro demand forecasting, and demonstrate the
multimodality of forecast distributions through clustering analysis.

Illustration of the alighting and boarding (AB) correlation
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Figure 2. Illustration of alighting and boarding (AB) correlation. Left: The probability of the next boarding station
given the current alighting station (Guangzhou metro data). Right: An illustration of chained behavior in metro
systems.

The alighting-boarding Transformer (ABTransformer)
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Figure 3. ABTransformer for metro passenger demand forecasting by explicitly modeling the correlations in the
alighting and boarding flow.

We use bi‐channel attention to explicitly capture the AB correlation.
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The range of the AB correlation is determined by the activity duration (a relative time
difference). Therefore, we use rotary positional embeddings (a type of relative positional
embedding) in ABTransformer.

qi,t = Rd
Θ,tW qzi,t, i ∈ {a, b}

ki,t = Rd
Θ,tW kzi,t, i ∈ {a, b}

where Rd
Θ,t is the the rotary matrix. Su et al. 2024 showed that the dot product of a query

and a key at any two time points t1, t2 after the rotation is a function that contains the relative
position information between the two time steps :

q⊤
i1,t1

ki2,t2 = f (zi1,t1, zi2,t2, t1 − t2) , i1, i2 ∈ {a, b}.

Interpreting the forecasting with attention weights
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Figure 4. Interpreting boarding demand forecasting in a metro station in Guangzhou using attention weights of the
last layer in the ABTransformer. The boarding demand forecast at the checked location exhibits significant
attention to periods with abnormal alighting demand, indicating the parts of the input sequence that contribute to
the forecast at the checked location.

Forecasting performance

Table 1. Deterministic forecast performance. N: normal flow, A: abnormal flow, T: total flow. Subscripts on model
names indicate the forecasting approach used: (I) independent, (J1) joint approach 1, or (J2) joint approach 2. The
best performance is highlighted in bold.

Guangzhou Seoul

Metric Model Boarding Alighting Boarding Alighting

N A T N A T N A T N A T

MAE

DeepARI 48.8 428.1 49.0 43.6 354.3 43.9 48.4 483.6 50.2 51.8 473.2 53.0
DeepARJ1 43.1 393.6 43.3 43.6 343.3 43.7 44.6 435.0 46.1 51.2 467.3 52.4

NlinearI 67.3 417.7 67.6 68.0 357.9 68.1 150.4 564.2 152.0 152.9 525.3 153.9
NlinearJ 63.8 393.4 64.0 64.6 363.6 64.6 125.5 453.3 126.8 134.7 513.1 135.8

TransformerI 48.8 424.8 49.1 46.5 363.0 46.5 52.1 488.8 53.8 54.8 461.1 56.0
TransformerJ1 40.2 366.6 40.4 40.5 319.5 40.6 47.2 428.9 48.7 52.1 442.1 53.2
TransformerJ2 41.7 352.1 41.9 42.8 348.1 42.9 48.5 404.5 49.9 53.1 458.1 54.2
Transformer∗J2 41.9 379.8 42.2 43.1 340.1 43.3 46.7 427.2 48.2 55.1 492.7 56.3

WMAPE

DeepARI 12.1% 45.0% 12.2% 10.4% 37.0% 10.4% 6.0% 36.4% 6.2% 6.4% 36.6% 6.6%
DeepARJ1 10.7% 41.4% 10.8% 10.9% 35.5% 10.9% 5.5% 33.1% 5.7% 6.3% 36.4% 6.5%

NlinearI 16.7% 43.9% 16.8% 16.9% 37.0% 16.9% 18.7% 42.5% 18.8% 19.0% 40.6% 19.1%
NlinearJ 15.9% 41.4% 15.9% 16.1% 37.6% 16.1% 15.6% 34.1% 15.7% 16.7% 39.6% 16.8%

TransformerI 12.2% 44.7% 12.2% 11.6% 37.6% 11.6% 6.5% 36.8% 6.7% 6.8% 35.6% 6.9%
TransformerJ1 10.0% 38.6% 10.0% 10.1% 33.0% 10.1% 5.9% 32.4% 6.0% 6.5% 34.4% 6.6%
TransformerJ2 10.4% 37.0% 10.4% 10.7% 36.0% 10.7% 6.0% 30.5% 6.2% 6.6% 35.4% 6.7%
Transformer∗J2 10.4% 39.9% 10.5% 10.7% 36.3% 10.8% 6.2% 35.4% 6.2% 6.9% 37.5% 7.0%

* Using absolute positional embeddings instead of rotary positional embeddings.
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Figure 5. Comparison of early warning capabilities for abnormal boarding demand: independent model
(TransformerI) vs. joint model (TransformerJ2).
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