
  

 

1 

 

 

TRAFFIC ASSIGNMENT PARADOX INCORPORATING 

CONGESTION AND STOCHASTIC PERCEIVED ERROR 

SIMULTANEOUSLY 

 

Jia Yao
1, 2

, Zhanhong Cheng
1
, Jingtong Dai

1
, Anthony Chen

3
, Shi An

1 

1
 School of Transportation Science and Engineering, Harbin Institute of Technology 

Harbin, Heilongjiang 150090, P. R. China 
2
 Department of Civil and Environmental Engineering, University of Illinois at 

Urbana-Champaign, Urbana, IL 61801, USA 
3
 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University 

Hung Hom, Hong Kong 

 

 

ABSTRACT 

This paper analyses the effects of congestion and stochastic perceived error in stochastic traffic 

assignment paradox, by the measure of both actual and perceived travel cost. Two different 

circumstances are studied: improving an existing link and adding a new link. It is found that 

different congestion cost functions and perceived error levels will significantly affect the road 

condition and the demand level under which paradox happens. Moreover, how the interaction 

between traffic demands of different O-D pairs affects the occurrence of traffic paradox is 

illustrated by a two O-D pairs’ network. Besides, a counter-intuitive phenomenon when less 

stochastic perceived error yet increases the average travel cost (information paradox) is also 

discussed. The results of this paper help to understand the interactional impact of congestion and 

stochastic perceived error, and give some new insights to traffic paradox. 
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1. Introduction  

Traffic researchers have long been puzzled with the phenomenon when adding or improving a 
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link in a road network may unexpectedly degrade the network’s performance, namely the traffic 

paradox. One of the most famous traffic paradoxes is the Braess’ paradox (Braess, 1968; Braess 

et al., 2005), which results from the discrepancy between the user equilibrium (UE) and the 

system optimal (SO) conditions. Many researches have been conducted to dig deeper 

understanding of Braess’ paradox (Frank, 1981; Steinberg and Zangwill, 1983; Dafermos and 

Nagurney, 1984; Pas and Principio, 1997; Zverovich and Avineri, 2015). Besides, the Braess’ 

paradox has also been inspected under different conditions, such as Braess’ paradox under 

elastic demand assignment (Hallefjord et al., 1994; Yang, 1997), dynamic/time-dependent 

traffic assignment (Arnott et al., 1993; Nagurney and Parkes, 2007), combined distribution and 

assignment (Yang and Chen, 2009), boundedly rational user equilibrium (Di et al., 2014). 

 

There are other traffic paradoxes that focus on different types of problem, causes of them are 

various, including stochastic assignment paradox (Sheffi and Daganzo, 1978; Sheffi, 1985; 

Prashker and Bekhor, 2000; Yao and Chen, 2014, Zhao et al., 2014), modal split paradox (Fisk, 

1979), capacity paradox (Yang et al., 1998), emission paradox (Nagurney, 2000), transit 

assignment paradox (Szeto and Jiang, 2014; Jiang and Szeto, 2016), maritime transportation
 

(Balland et al., 2015), reliability paradox
 
(Yin and Ieda, 2002; Szeto, 2011), exclusive bus lanes’ 

setting paradox (Yao et al., 2015), and noise paradox (Wang and Szeto, 2017). 

 

The stochastic assignment paradox caused by the stochastic perceived error of travellers was 

firstly proposed by Sheffi and Daganzo (1978), it can happen in an uncongested network. 

Prashker and Bekhor (2000) compared the stochastic assignment paradox with the UE and SO 

solutions using non-linear cost function, they concluded that the paradox only occurs in a 

certain range of demand volume. The feature of stochastic assignment paradox is further 

analysed by Yao and Chen (2014) and Zhao et al. (2014) in uncongested cases. In addition, 

paradoxes that involve the stochastic perceived error include modal split paradox (Fisk, 1979), 

combined distribution and assignment paradox
 
(Yang and Chen, 2009), exclusive bus lanes’ 

setting paradox (Yao et al., 2015), etc. 

 

Although there have been many studies about the stochastic assignment paradox, little literature 

has discussed traffic assignment paradox incorporating congestion and stochastic perceived 

error simultaneously in details. This paper tries to bridge this gap, and inspects some 

phenomena that occur only when both factors are present. For example, the paradox measured 

by perceived travel cost in congested network and the ―information paradox‖. The information 

paradox in this paper refers to when less perceived error (more information) yet increases 

average travel cost. This phenomenon has long been noticed (Boyce, 1988), and has become 

increasingly valuable in the age when Advanced Traveller Information Systems (ATIS) prevails 

in major cities. Previous studies mainly focus on the potential actions (departure time, change 

route, etc.) taken by travellers and the corresponding consequences after receiving the 

information. The methods applied include Vickrey equilibrium (Arnott et al., 1991), user 

equilibrium (Lindsey et al., 2014) and simulation (Rapoport et al., 2014). Our study, instead, 

using the perceived error to mark the amount of information gained by travellers and to analyse 
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the condition for information paradox to happen. 

 

We try to answer the following questions: (1) How does the congestion affect the stochastic 

assignment paradox? (2) Does the paradox corresponding to the average perceived travel cost 

exist? (3) How does the interaction between traffic demands from different O-D pairs affect the 

traffic paradox? (4) How does the change of stochastic perceived error affect the total travel 

cost in a congested network? The answers of these questions are given by analysing the paradox 

in a two-link network, the Braess’ network and a two O-D pairs’ network. 

 

The reminder contents are organized as follows. Section 2 gives a brief review of the SUE 

model and its paradox. Section 3 studies the stochastic assignment paradox under the criterion 

of actual travel time. Section 4 further analyses the paradox by the measure of perceived travel 

time. A multiple O-D pairs’ case is studied in Section 5. Section 6 discusses the phenomenon 

when less perceived error increases average travel cost, i.e. the information paradox. Finally, 

main conclusions are summarised in Section 7. 

2. Some definitions of SUE and its paradox 

Daganzo and Sheffi (1977) proposed the concept of SUE; the stochastic equilibrium conditions 

are reached when 

 𝑓𝑘
𝑖 =  𝑃𝑘

𝑖 𝑄𝑖;    ∀𝑘 ∈ 𝐾𝑖   𝑖 ∈ 𝐼,  (1) 

where 𝑓𝑘
𝑖 is the flow of route 𝑘 in O-D pair 𝑖, 𝑃𝑘

𝑖  is the probability of choosing route 𝑘 in the 

O-D pair 𝑖, 𝑄𝑖 is travel demand of O-D pair 𝑖, 𝐼 and 𝐾𝑖 are O-D pair set and route set of O-D 

pair 𝑖 respectively. The route choice probability is based on discrete choice model and can be 

obtained by 

 𝑃𝑘
𝑖 = Pr( 𝐶𝑘

𝑖 ≤ 𝐶𝑙
𝑖 , ∀𝑙 ∈ 𝐾𝑖and 𝑘 ≠ 𝑙),  (2) 

where 𝐶𝑘
𝑖  is the perceived travel cost of route 𝑘 in O-D pair 𝑖. In random utility theory, it is 

conventionally assumed that 𝐶𝑘
𝑖 = 𝑐𝑘

𝑖 + 𝜉𝑘
𝑖 , where 𝑐𝑘

𝑖  and 𝜉𝑘
𝑖  are the actual travel cost and the 

perceived error of route 𝑘 in O-D pair 𝑖. When assuming perceived error satisfies independent 

identical Gumbel distribution (Multinomial Logit Model), then 

 𝑃𝑘
𝑖 =

𝑒−𝜃𝑐𝑘
𝑖

∑
𝑙∈𝐾𝑖𝑒−𝜃𝑐𝑙

𝑖 ;    ∀𝑘 ∈ 𝐾𝑖   𝑖 ∈ 𝐼,  (3) 

where 𝜃 is a scale parameter relates to the variance of the stochastic perceived error. To obtain 

the SUE solution, regular network constrains also need to be hold: 

 𝐶𝑘
𝑖 = ∑ 𝑇𝑎𝛿𝑎𝑘

𝑖
𝑎∈𝐴 , ∀𝑘 ∈ 𝐾𝑖 , 𝑖 ∈ 𝐼  (4) 

 𝑥𝑎 = ∑ ∑ 𝑓𝑘
𝑖𝛿𝑎𝑘

𝑖
𝑘∈𝐾𝑖𝑖∈𝐼 ;    ∀𝑎 ∈ 𝐴 (5) 

 𝑡𝑎 = 𝑡(𝑥𝑎),  (6) 



  

 

4 

 

 

where 𝑇𝑎 is the perceived travel cost of link 𝑎, 𝑥𝑎 represents the link flow, 𝑓𝑘
𝑖 is the flow of route 

𝑘 in O-D pair 𝑖, 𝛿𝑎𝑘
𝑖 =1 if route 𝑘 of O-D 𝑖 pass through link 𝑎, otherwise 𝛿𝑎𝑘

𝑖 =0, 𝐴 is link set, 𝑡𝑎 

is the actual travel cost of link 𝑎. Because the mean of perceived error is assumed to be zero, we 

have 𝐸(𝑇𝑎) = 𝑡𝑎. 

 

At the state of user equilibrium, no travellers can improve his or her travel cost by unilaterally 

changing routes. In stochastic user equilibrium, however, every traveller minimises his or her 

perceived travel cost. Since the perceived travel cost of a route is a random variable, we concern 

about the average/expected perceived travel cost of an O-D pair. The average perceived travel 

cost of O-D 𝑖 can be expressed as follows: 

 𝐶 �̃� = 𝐸[min𝑘∈𝐾𝑖{𝐶𝑘
𝑖 }].  (7) 

𝐶 �̃� captures the average perceived travel cost of a randomly selected traveller between O-D pair 

𝑖. As discussed by Sheffi and Daganzo (1978), in a fixed-cost network, the partial derivative of 

the average perceived travel cost of an O-D pair with respect to the actual travel cost of a route 

equals the probability to choose that route, that is: 

 
𝜕𝐶 �̃�

𝜕𝑐𝑘
𝑖 = 𝑃𝑘

𝑖 ;   ∀𝑘 ∈ 𝐾𝑖.  (8) 

Using this property, we can derive the expression of average perceived travel cost. The average 

perceived travel cost of O-D pair 𝑖 for Logit model is: 

 𝐶𝐿
�̃� = −

1

𝜃
ln ∑ 𝑒−𝜃𝑐𝑘

𝑖

𝑘 .  (9) 

Sheffi and Daganzo (1978) have demonstrated that the stochastic paradox will never happen in 

the non-congested network when measured by average perceived travel cost. We will continue 

the discussion in the congested network. In all the examples presented in this paper, we use the 

Multinomial Logit route choice model. Because of the complexity of the SUE problem, the 

equilibrium state is obtained by the method of successive averages (MSA) algorithm. The 

algorithm stops when the relative distance between the last two iterations satisfies 

√∑(𝑥𝑎
𝑛+1 − 𝑥𝑎

𝑛)2

∑𝑥𝑎
𝑛 ≤ 10−5                                                                      (10) 

or maximum iteration number (1000) is reached. Since only small networks are applied in this 

paper, the algorithm converges very well after an acceptable number of iterations. 

 

Like congestion effect, stochastic perception error is also one of the most essential factors affect 

the traffic distribution. It has been increasingly taken into account in the study of the traffic 

network (Jansuwan and Chen, 2015). Note that a larger 𝜃 value means a smaller variance in 

travellers’ stochastic perceived error. When travellers get more information, the stochastic 

perceived error will become smaller (𝜃 value will become lager). There is a counter-intuitive 
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phenomenon that a smaller perceived error (more information) may lead to a higher average 

actual travel cost. We refer this phenomenon as information paradox, and it is evaluated by 

analysing the change of total actual travel cost with different levels of perceived error. 

3. The paradox measured by actual travel cost 

In this section, we use average actual travel cost as the criterion to measure the network’s 

performance. Under this criterion, we investigate the feature of stochastic assignment paradox 

when congestion effect is introduced under two different circumstance: improving an existing 

link and adding a new link. 

3.1 Improving a link 

Similar to Sheffi and Daganzo (1978) and Yao and Chen (2014), the simple two-link network 

shown in Figure 1 is used in this section. 

 

1 2

link 1

link 2

Origin Destination
 

Figure 1 Two-link network 

To evaluate the impact of congestion effect on the stochastic assignment paradox, we compare 

the paradox area of the two-link network under fixed cost 𝑡𝑎 = 𝑡0𝑎 , linear cost function 

𝑡𝑎 = 𝑡0𝑎 .1 +
𝑥𝑎

1000
/ and BPR function 𝑡𝑎 = 𝑡0𝑎 (1 + 0.15 .

𝑥𝑎

1000
/

4

), where 𝑡𝑎 and 𝑡0𝑎 are the 

actual and free flow travel cost of link 𝑎 respectively; 𝑥𝑎 is the flow volume of link 𝑎. The 

average travel cost of the two-link network can be expressed as follows: 

 𝐶̅ = 𝑡1𝑝1 + 𝑡2𝑝2 =
𝑡1𝑒−𝜃𝑡1

𝑒−𝜃𝑡1+𝑒−𝜃𝑡2
+

𝑡2𝑒−𝜃𝑡2

𝑒−𝜃𝑡1+𝑒−𝜃𝑡2
, (11) 

Assuming a small improvement in the free flow travel cost of link 1, the paradox occurs when 

the improvement results in a higher average travel cost. For different travel demand levels, the 

paradox areas of the fixed-cost case are the same; it can be easily obtained from the partial 

derivative of the average travel cost with respect to the improved link’s cost, which has been 

studied by Yao and Chen (2014). For the congestion case, however, the condition under which 

paradox happens is related to the demand level, and the derivative is too complicated to be 

analytically obtained. Even in this simple two-link network, it is needed to solve a nonlinear 

equation contains exponential terms to obtain the equilibrium state. Therefore, an alternative 

numerical method is applied: for any given 𝑡02, 𝑄 and 𝜃, the boundary of paradox happens or 

not can be obtained by finding 𝑡01 which maximises the 𝐶̅.  
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Figure 2 shows the differences in paradox area of the three cost functions with different demand 

levels when 𝜃 = 0.4. The upper left part of each curve is no paradox area, and the lower right 

part of each curve is the paradox area, main findings are as follows: 

 Congestion effect has a significant influence to the stochastic assignment paradox; the 

paradox areas exhibit different features when different cost functions are applied.  

 It shows that the paradox area of congestion case is closer to the fixed-cost case when 

demand level is lower. It is intuitively understandable. Because when demand level is low, 

the actual travel cost is closer to the free flow travel cost, the flow distribution of 

congestion case and fixed-cost case are less different and consequently leads to more 

similar paradox areas. 

 In the fixed-cost case, the slope of paradox boundary curve is 1, which means 𝑡01 − 𝑡02 is a 

constant (Yao and Chen, 2014). However, the slopes for the congested case shown in the 

figure are smaller than 1, the absolute difference between free flow cost 𝑡01  and 𝑡02 

enlarges with the increase of 𝑡02 in congested case. Despite this, the difference of actual 

travel cost between the two routes will be narrowed down at the equilibrium condition, 

because the costlier route will have less flow and have less increase in actual cost. 

 

 

Figure 2 Paradox areas under different cost functions and demand levels when 𝜃 = 0.4 

 

3.2 Adding a link 

In addition to improving an existing link, we use the network shown in Figure 3 to investigate 

the paradox when adding a new link. The network has the same configuration with the Braess’ 

network, and link cost functions are set to be the same with which were used by Arnott and 

Small (1994), where 𝑡1 = 0.01𝑥1, 𝑡2 = 𝑡3 = 15, 𝑡4 = 0.01𝑥4, 𝑡5 = 7.5 . The link 5 is the 
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additional link. Before link 5 is added, the demand is equally loaded on routes 1 and 2 (because 

the network is symmetric). After adding link 5, there are three alternative routes, namely route 1 

(link 1→link 3), route 2 (link 2→link 4) and route 3 (link 1→link 5→link 4). 

 

2

41

3

5

 

Figure 3  The Braess’ network 

 

Define 𝐶4
̅̅ ̅ and 𝐶5

̅̅ ̅ to be the average travel cost of the network before and after link 5 is added, 

then 𝐶5
̅̅ ̅ − 𝐶4

̅̅ ̅ can be used to indicate whether the paradox happens or not. When 𝐶5
̅̅ ̅ − 𝐶4

̅̅ ̅ > 0, 

the additional link increases the average travel cost and the paradox corresponding to the actual 

travel cost occurs. Otherwise, the paradox doesn’t occur. 

 

We are especially interested in how different 𝜃 in SUE influences the flow distribution as well 

as the demand interval in which paradox happens. The distributions of the equilibrium route 

flow with different traffic demands in the UE and the Logit SUE models after adding link 5 are 

shown in Figure 4. The value of 𝐶5
̅̅ ̅ − 𝐶4

̅̅ ̅ for different traffic demands 𝑄 are also shown in 

Figure 5, where the part of 𝐶5
̅̅ ̅ − 𝐶4

̅̅ ̅ > 0 means that the paradox will happen. 

 

 

(a) UE (𝜃 → +∞) (b) SUE (𝜃 = 1.5) (c) SUE (𝜃 = 0.4) 

Figure 4  Route flows at equilibrium state with different 𝑄 values 
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(a) UE (𝜃 → +∞) (b) SUE (𝜃 = 1.5) (c) SUE (𝜃 = 0.4) 

Figure 5  𝐶5
̅̅ ̅ − 𝐶4

̅̅ ̅ with different 𝑄 values 

 

Figure 4 (a) depicts the change of equilibrium flow of UE model, it can be seen that the flow of 

route 1 and route 2 keeps zero at low demand level and begin to grow with the increase of travel 

demand after a threshold point (where the travel cost of route 3 just equals the free flow travel 

cost of routes 1 and 2). While the flow on route 3 will first increase and then decrease to zero 

after 𝑄 = 1500 (beyond which route 3 is always the worst alternative). For Logit SUE model, 

as shown in Figure 4 (b) and (c), the trend of equilibrium flow is similar to the UE model, 

except the flow on each route is always non-zero. It is because, theoretically, the possibility for 

a traveller to choose an inferior route always exists even with a very big actual travel cost. By 

comparison, it can be found the flow assignment result of the Logit SUE is more similar to the 

result of the UE for a larger 𝜃. 

 

It is shown in Figure 5 that the demand interval (part B) in which paradox happens of UE model 

has both a lower bound and an upper bound. When the demand level is relatively low (part A), 

the addition of link 5 decreases the average travel cost. When the demand level is higher than 

the upper bound (Part C), link 5 makes no difference to the average travel cost, which can be 

explained by Figure 4 (a) in which route 3 (link 5) has no flow in that area.  

 

For the SUE model, however, there is no upper bound for demand level higher than which 

paradox does not occur. The reason is as we have mentioned, route 3 (link 5) is always possible 

to be chosen even its travel cost is the worst when travel demand is very big. The lowest 𝑄 for 

SUE paradox to happen varies with different 𝜃, the relationship is shown in Figure 6. We can 

find the 𝑄  value approximates to 500 (the lower bound of UE paradox happens) when 𝜃 

becomes bigger. The reason is that SUE would approximate to UE when 𝜃 → +∞ . 
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Figure 6  The lowest 𝑄 for SUE paradox measured by actual cost to happen with different 𝜃 

 

4. The paradox measured by perceived travel cost 

Sheffi and Daganzo (1978) have concluded that the stochastic assignment paradox in a 

fixed-cost network will never happen if the system object is to minimise the average perceived 

travel cost. This conclusion, however, is not necessarily true for the congested network. We still 

use the Braess’ network shown in Figure 3 to unfold our discussion about the perceived travel 

cost paradox in this section. 

4.1 Improving a link 

There is an important property for the average perceived travel cost. As shown in Equation (8), 

the partial derivative of the average perceived travel cost of an O-D pair with respect to a route’s 

actual travel cost is the probability of choosing that route. Because the probability is always 

non-negative, when decreasing the actual travel cost of a route in a fixed-cost network, the 

average perceived travel cost of corresponding O-D pair will never increase, in other words, no 

paradox. 

 

This property also holds for congested networks (that is why we can use the same Equation (9) to 

calculate average perceived travel cost in both cases), but the ―no paradox‖ conclusion cannot be 

derived from this property in the congested case. The reason lies in the actual travel time of route 

varies with the flow in the congested network. After improving a route, the flow redistribution 

changes the actual travel cost of not only the improved route, but also other routes. Unlike the 

fixed-cost network, the actual travel cost of a route can never be ―partially improved‖, and 

therefore the ―no paradox‖ conclusion cannot be drawn from Equation (8). 

 

Proposition 1: when improving an existing link in a flow-dependent network, the stochastic 
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assignment paradox with regard to the average perceived travel cost could exist. 

 

We use the five-link Braess’ network shown in Figure 3 to show the existence of ―average 

perceived travel cost paradox‖ when link 5 is improved. Fix 𝑄 = 1000, 𝜃 = 1.5, and vary 𝑡5 

from 0 to 20 to observe the corresponding average perceived travel cost �̃�, the results are shown 

in Figure 7. Firstly, as discussed by Sheffi and Daganzo (1978), it can be found that �̃� ≤

min(𝑇1, 𝑇2, 𝑇3) is always ture. Secondly, roughly starting from 𝑡5 > 4, we can see that the 

average perceived travel cost decreases with the increase of  𝑡5, which means the ―paradox with 

regard to average perceived travel cost‖ exists in congested networks. 

 

The reason of this paradox can be found by looking into the actual travel cost of each route at 

equilibrium state. For non-congested case, improving link 5 will decrease the actual cost of route 

3, and leave the actual cost of routes 1&2 unchanged. However, in congested case, we can find 

from Figure 7 that when improving link 5 (decrease 𝑡5) at around 5 < 𝑡5 < 10, the travel cost of 

routes 1&2 and even route 3 conspicuously increase. The flow-dependent and correlated feature 

of congested networks is the cause of the paradox. 

 

From another aspect, the occurrence of this paradox parallels Braess’ paradox. In the SUE 

model, no traveller can unilaterally improve his or her perceived travel cost, the state of ―user’s 

equilibrium of perceived travel cost‖ is not identical to the state when the system has the 

minimum total users’ perceived travel cost, the discrepancy leads to the paradox. The same 

reason applies to adding a link case. For the equilibrium with total system’s minimum perceived 

cost, the reader is referred to the Stochastic Social (or System) Optimum (SSO) (Maher et al., 

2005). 

 

 

Figure 7 Change of the average perceived travel cost and the actual travel cost of different 

 routes with different 𝑡5, in the Braess’ network when  𝑄 = 1000, 𝜃 = 1.5 
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4.2 Adding a link 

This section evaluates the stochastic paradox when adding a new link into the network by the 

measure of perceived travel cost. The average perceived travel cost of an O-D pair with N 

routes is as follows (The superscript numbers the O-D pair is omitted for simplicity): 

  𝐸[mini=1
N *𝐶𝑖+].  (12) 

Proposition 2: when adding a new link to a flow-dependent network, the stochastic assignment 

paradox with regard to the average perceived travel cost could exist. 

 

To prove Proposition 2, we only need to find an example, which we will show in Figure 8 latter. 

But we would like to show why it is different from the non-congested case. When a new link is 

added, say there is the (𝑁 + 1)th route, the average perceived cost is 𝐸,min𝑖=1
𝑁+1*𝐶′𝑖+-, where 

𝐶′𝑖 is the perceived travel cost of route 𝑖 after the addition. Because of the monotonicity of 

expectation, we have the following transformation: 

 𝐸,min𝑖=1
𝑁+1*𝐶′𝑖+- = 𝐸,min*min𝑖=1

𝑁 *𝐶′𝑖+ , 𝐶′𝑁+1+-  

                                                                ≤ min*𝐸,min𝑖=1
𝑁 *𝐶′𝑖+-, 𝐸,𝐶′𝑁+1-+ ≤ 𝐸,min𝑖=1

𝑁 *𝐶′𝑖+-.  (13) 

For the non-congested case, link cost (both actual and perceived) is flow-independent. 

Therefore the original route cost will not change after adding new link(s), thus 𝐶𝑖 = 𝐶𝑖
′, and the 

rightmost item of Equation (13) equals Equation (12). Therefore, the average perceived travel 

cost will never increase when a new link is added, which means the paradox will never happen. 

For the congested network, the flow redistribution resulted from the new link would change the 

cost of original links, and 𝐶𝑖 ≠ 𝐶𝑖
′, which leads to the rightmost of Equation (13) may not equal 

to (be bigger than) Equation (12), the average perceived cost may increase, and the paradox 

could happen. Again, the cause of this paradox is the flow-dependent and correlated feature of 

congested network, and it is analogous to the Braess’ paradox. 

 

Similar to the last section, the Braess’ network shown in Figure 3 is used to show the paradox. 

𝐶4̃ and 𝐶5̃ represent average perceived travel cost before and after link 5 is added, which are 

calculated by Equation (9). The values of 𝐶5̃ − 𝐶4̃ for different demand levels are shown in 

Figure 8, in which 𝐶5̃ − 𝐶4̃ > 0 means the paradox occurs. It is conspicuous that the paradox of 

stochastic assignment after adding a link in the perceived cost measure will happen, after a 

certain demand threshold, the paradox always exists. 

 

Furthermore, the relationship of 𝜃 value and the lowest 𝑄 for SUE paradox to happen is shown 

in Figure 9. The blue dash line means the critical value of 𝑄 for the average perceived cost case. 

For comparison, the critical value of 𝑄 for the average travel cost case is also added in red 

dash-dotted line. It is clear that the critical 𝑄 values under two measures are different, the value 

for the average perceived cost case is higher than which in the average travel cost case when 𝜃 

is small. Reversely, the critical value of 𝑄 for the average perceived cost case is smaller than 

which in the average travel cost case when 𝜃 is large. When 𝜃 → +∞, both of them approach to 

500, which is the result of the UE model. Specifically, the change of the critical value of 𝑄 for 



  

 

12 

 

 

the average perceived cost case is non-monotonous. The curve also shows the paradox 

corresponding to the average perceived travel cost can happen when demand is less than 500, 

under which the paradox measured by average travel cost will never happen. 

 

 

Figure 8 Difference between 𝐶5̃ and 𝐶4̃ with different 𝑄 value 

 

 

Figure 9  The lowest 𝑄 for SUE paradox to happen with different 𝜃 

 

5. A multiple O-D pairs’ case 

This section inspects how the traffic demand of an O-D pair affects the paradox of another O-D 
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pair. We introduce link 6, link 7 and destination 5 to the Braess’ network to form the two O-D 

pairs’ network shown in Figure 10. The links’ costs are inherited from the original network, 

they are  𝑡1 = 0.01𝑥1, 𝑡2 = 𝑡3 = 𝑡6 = 15, 𝑡4 = 0.01𝑥4, 𝑡5 = 7.5, 𝑡7 = 0.01𝑥7 , which lets 

O-D1,4 and O-D1,5 have the same route cost structure.  

2

41

3

5

5
 

Figure 10  A two O-D pairs’ network 

Now we inspect whether the paradox happens after adding the link 5. When other parameters 

are fixed, whether the paradox occurs depends only on the traffic demand of O-D1,4  and O-D1,5. 

We are interested in how the traffic demand of O-D1,5 affects the paradox of O-D1,4 and the total 

network. Thus, the demand areas in which paradox happens are shown in figures, whose axes 

are the traffic demand of O-D1,4 and O-D1,5 respectively. 

 

   

Figure 11  In user equilibrium, the demand area in which paradox happens 

 

As is shown in Figure 11, when there is no destination 5, the paradox of O-D1,4 happens in the 

demand interval (500, 1500). However, when introducing a new high demand destination 5 

(e.g. when traffic demand of the new O-D1,5 larger than 1500), the paradox in the O-D1,4 

disappears. On the contrary, some originally no-paradox areas transfer to paradox areas after 

the introduction of the new O-D pair when certain demand condition met. For the stochastic 

Paradox area when 

there is no O-D1,5 

Paradox area  

for O-D1,4 only 

Paradox area for 

the two O-D pairs’ network 
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assignment measured by actual time and perceived time, their paradox areas are shown in 

Figure 12. Although in different forms, it can also be found that the demand level of O-D1,5 has 

significant effect in the stochastic assignment paradox feature of O-D1,4 and total network. 

Similar to section 3.1, stochastic assignment paradox of this network always exists in high 

demand level. It is because, theoretically, the worst route which passes link 5 is always possible 

to be chosen in the stochastic assignment.  

 

 

  

(a) Measured by actual travel cost (b) Measured by perceived travel cost 

Figure 12  In stochastic user equilibrium, when 𝜃 = 0.4,  

the demand area in which paradox happens 

 

This section shows how the traffic paradox is affected by the interaction of traffic demands 

from different O-D pairs. The practical implication is twofold. On the one hand, removing 

negative-effect links is not the only way to reduce paradox, proper re-allocation of O-D 

demands also helps to alleviate the inefficiency of these links. On the other hand, we should 

also be aware of that the function of some links may be undermined by some unwanted changes 

(e.g., a newly developed shopping centre) in the regular O-D distribution of the network, even 

from positive to negative effect. 

 

6. Information paradox 

Intuitively, more accurate information about the travel cost of roads helps one to choose a less 

expensive route, and thus decrease average travel cost. However, many studies have shown that 

more information may have a counter effect. In the Logit SUE model, the dispersion parameter 

𝜃 can be used to mark the amount of information obtained by travellers. When 𝜃 → +∞, 

travellers have full information and always choose the route with least cost (equivalent to UE), 

Paradox area when 

there is no O-D1,5. 

Paradox area  

for O-D1,4 only. 

Paradox area for 

the two O-D pairs’ network. 
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when 𝜃 → 0+ travellers have zero information of network and thus uniformly choose each 

route. Under different demands and road conditions, average travel cost of network may 

increase with the increase of the information level, which is referred as information paradox in 

this paper. 

 

For the five-link Braess’ network shown in Figure 3. Figure 13 shows the change of average 

travel cost 𝐶5
̅̅ ̅ with regard to 𝜃 under the demand level of 𝑄 = 420 and 𝑄 = 1000. Both Figure 

13 (a) and (b) show 𝐶5
̅̅ ̅ could increase with a higher information level. In Figure 13 (a), the 

average travel cost of SUE model reaches to the system optimal solution at point A
1
, after point 

A, 𝐶5
̅̅ ̅ begins to increase and approximates to the UE with the increase of 𝜃. In the demand level 

of 1000, zero information case has the minimum average travel cost in SUE model, and 𝐶5
̅̅ ̅ 

monotonically increases with 𝜃. For the full picture of the 𝐶5
̅̅ ̅ with regard to 𝜃 and 𝑄, we can 

look at the contours in Figure 14 (b), it is conspicuous that average travel cost increases with the 

increase of 𝜃 in certain demand level. 

 

 

(a) 𝑄 = 420 (b) 𝑄 = 1000 

Figure 13  Change of the average travel cost with respect to 𝜃 

 

Proposition 3: if there is a certain information level �̃�, under which the average travel cost of 

the SUE model is less than which of the UE model, the information paradox will happen. 

 

Proposition 3 is immediate, since in the full information case, SUE→UE, if the cost under 

information level �̃� is less than the full information case, the information paradox therefore 

                                                 
1
 Because of the special structure of the cost functions in the network, route 1 and route 2 always have the same 

cost and therefore have the same flow. Changing 𝜃 can adjust the flow proportion between routes 1&2 and route 3 

and get the same solution with SO. However, in some conditions of SO, inferior routes (routes 1&2) have more 

flow, these conditions can never be reached in SUE by adjusting 𝜃, because the SUE model always assigns more 

flow to the superior route, such condition can be seen in Figure 13 (b). 

A 
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happens. 

 

To further understand under which demand will information paradox happen, change of 

average travel cost with respect to 𝑄 in different models and contours of average travel cost 

with respect to 𝑄 and 𝜃 are shown in Figure 14. According to the proposition 3 and as is shown 

in Figure 14 (a), the curve of the SUE model traverses the gray area A, which means the average 

travel cost of the SUE model is less than which of the UE model, and information paradox 

exists. To obtain the boundary of whether information paradox happens or not, we need to find 

a demand level at which the minimum average travel cost of the SUE model among all 

information level equals to the average travel cost of the UE model. The demand interval for the 

occurrence of information paradox has been shown in Figure 14, it is interesting to see the 

information paradox never occurs when UE equals SO. It is because the average travel cost of 

the SUE cannot be better than the system optimal solution, when UE=SO, the 𝜃 mentioned in 

proposition 3 does not exist. 

 

 

(a) Change of average travel cost with 

respect to 𝑄 in different model 

(b) Contours of average travel cost with 

respect to 𝑄 and 𝜃 

Figure 14 Demand interval for information paradox to happen 

 

From the perspective of average perceived travel cost, interpreting θ as travellers’ unmeasured 

preference rather than information level should be more justified, since perceived travel cost is 

related to individual’s utility. The traveller’s preference is basically caused by the route 

characteristics and the heterogeneity of routes and travellers, and a small 𝜃 implies a wider 

heterogeneity. Thus, the paradox in this section also implies that the reduction of heterogeneity 

among travellers/routes may sometimes exacerbate congestion.  

 

7. Conclusions 

This paper analyses the effects of congestion and stochastic perceived error on traffic paradox 

P
ar

ad
o

x
 i

n
te

rv
al
 

Paradox interval 

Average travel cost increases 
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under the traditional Logit SUE model, by the measure of both actual and perceived travel cost. 

Besides, a two O-D pairs’ network is used to show how the interaction between traffic demands 

of different O-D pairs affects the occurrence traffic paradox. Further, the information paradox 

in which a higher stochastic perceived error may decrease travellers’ average travel cost is also 

analysed. Main conclusions are summarised as follows: 

 

(1) Congestion effect has significant influence on the road condition under which stochastic 

paradox happens; different cost functions have different effects. When congestion level is 

less intense, the paradox condition is more similar to the fixed-cost case. On the other hand, 

perceived error also influences the demand interval where Braess’ paradox happens, the less 

the perceived error is, the closer the boundary of the paradox interval is to the deterministic 

UE assignment. 

(2) Different from the fixed-cost network, the stochastic assignment paradox corresponding to 

the average perceived travel cost exists in the congested network, both in the case of 

improving an existing link and adding/deleting a link. This parallels Braess’ paradox, in the 

SUE model, the state of ―user’s equilibrium of perceived travel cost‖ is not identical to the 

state when the total system has the minimum perceived travel cost, and the discrepancy 

causes the paradox. 

(3) The demand of a O-D pair has a significant influence to the traffic efficiency of other O-D 

pairs. Whether the traffic paradox of a specific O-D pair / total network occurs depends on 

the distribution of O-D demand among the network. 

(4) The information paradox when more information counter-intuitively decreases travellers’ 

average travel cost could happen in specific demand interval, in which the average travel   

cost of the SUE can be lower than which of UE by adjusting the stochastic perceived error. 

The condition when UE equals SO could help to avoid information paradox. From another 

perspective, under certain circumstance, a proper degree of heterogeneity among 

routes/travellers also helps to alleviate congestion. 

 

Our research helps traffic practitioners to understand the interactional impact of congestion and 

stochastic perceived error, and therefore to avoid incorrect judgments or unnecessary 

construction in real life. For example, in section 3.2, the example shows that the paradox of the 

SUE model always exists in high congestion (demand) level, while this is not the case of the UE 

model. Think about a circumstance where several equally congested arteries are connected by 

some low-quality links; constructing new links like that will only aggravate congestion. The 

property of perceived error ensures that some travellers will always choose those links; they shift 

among equally congested arteries, but the travel time cannot be reduced. Section 5 demonstrates 

that removing negative-effect links is not the only way to reduce paradox, proper re-allocation of 

O-D demands also helps to alleviate the inefficiency of these links. The application scope can be 

further widened, such as designing one-way street is equivalent to delete a link. In addition, 

different congestion level and different parameters in the model have significantly different 

outcomes; traffic practitioner should be fully aware of this to make a reliable decision. 
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With the broad application of Advanced Traveller Information Systems (ATIS), travellers 

nowadays have more accurate information about roads’ conditions. As is shown in our 

example, however, this not necessarily helps to improve the network performance. By adjusting 

the amount of information or providing information only to part of travellers under certain 

condition may have a better effect. A network structure or demand level in which UE is more 

close to SO also helps to avoid information paradox. 

 

Further research includes: (1) analyse the paradox under the SUE condition in large networks 

(Youn et al., 2008; Jansuwan and Chen, 2015; Çolak et al., 2016); (2) seek better traffic network 

evaluation indicators, and use different evaluation indicators for different networks and different 

planning purposes; (3) evaluate the paradox features in other route choice models which 

consider congestion and stochastic perceived error (e.g., various extended logit-based models of 

Prashker and Bekhor (2004) and Chen et al. (2012); weibit-based models of Castillo et al.( 2008) 

and Kitthamkesorn and Chen (2013, 2014); and hybrid logit-weibit-based models of Yao and 

Chen (2014) and Xu et al. (2015)); (4) study the paradox under dynamic traffic assignment 

(Arnott et al., 1993; Akamatsu, 2000; Nagurney and Parkes, 2007), and compare the results of 

theses models. 
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