Haiming Cai¹ hemingway@stu.hit.edu.cn

INTRODUCTION

• The study aims to explore relationships between charging station utilization and urban form and demand for taxis.

HARBIN

TECHNOLOGY

• The study conducts a *data-driven* empirical study based on a large-scale electric taxi trajectory dataset.

Fig. 1. Spatial distribution and capacities of charging stations

- A Random Forest model, explained by SHAP value method, is presented to investigate the potential non-linear associations and spatial-temporal interactions
- The study enhances the knowledge on *the extent of the factors* effectively affect utilization and gives guidance on how to prioritize factors in charging station planning.

DATA PREPARATION

Area of intersts (AOI) data

Bus and metro

Road network data

harging station data

station data

Data source

Shenzhen Transportation taxi ID.

	Stud	ly	Ar	'ea		
TI.		_	1-		-	

The data sets are collected from Shenzhen, Trajectory data a pioneer in promoting EVs. In January 2019, there were more than **20,000** electric taxis **260** charging stations

10,000 charging outlets

• Data and Variables

Charging station Unoccupied trajecto

Fig. 2. Charging event identification algorith

Dependent variable:

hourly utilization rate

Taxi charging events are identified from trajectory data based on the identification algorithm. To count collective *feature variables* of each charging station, buffer zones are created based on Voronoi diagram.

utilization = $\frac{\sum_{i=1}^{n} \frac{d_i}{60}}{n} \times 100\% = \frac{\sum_{i=1}^{n} d_i}{60 \cdot n} \times 100\%$

Independent variables: hourly pick-up density

hourly drop-off density metro station density land-use entropy

population density bus station density road density

land-use entropy = $-\left|\sum_{i=1}^{N} P_{j} \cdot ln\left(P_{j}\right)\right| / \ln N$

where *j* represents the number of land use categories; P_i is the percentage of the *j*-th land use type in the area; N is the number of land use categories.

Fig. 3. Station-level buffer zone

STUDY ON IMPACT FACTORS OF CHARGING STATION UTHERATION USING RANDOM FOREST AND SHAP VALUE METHODS

Fan Wu² wu3@ualberta.ca

Zhanhong Cheng³ zhanhong.cheng@mail.mcgill.ca

Jian Wang¹ vang jian@hit.edu.cn

Table 1. Desc	Description of the data sets					
ata source	Key information	Relevant variable(s)				
henzhen Transportation ommittee [*]	taxi ID, longitude, latitude, time, speed, status (occupied/vacant)	hourly utilization rate, pick-up density, drop-off density				
map website	AOI ID, longitude, latitude, name, area, category	land-use entropy				
map website	station ID, longitude, latitude, name, route number	bus station density, metro station density				
VorldPop Dataset	grid ID, longitude, latitude, population density	population density				
penStreetMap	road ID, longitude, latitude, road type	road density				
henzhen Transportation ommittee [*]	station ID, longitude, latitude, name, number of outlets, opening date	hourly utilization rate				

where *n* is the number of charging outlets in the charging station, *d*_i is the occupied duration (in minute) of charging outlet *i*.

METHODOLOGY

Random Forests Regression (RFR) The RFR is an ensemble learning method consisting of a multitude of *decision trees*. A hyperparameter tuning process is applied to acquire a set of optimal hyperparameter combinations with a **5-fold cross-validation**.

SHapley Additive exPlanation (SHAP) method The SHAP can describe the performance of a machine-learning model. All independent variables of the RFR are regarded as *contributors* in SHAP. The contribution of *j*-th variable x_i is

where **S** is the subset of variable set **P**, and $\{x_1, \dots, x_p\} \setminus \{x_i\}$ are the all possible sets of variables excluding x_i

A linear function of binary variables g can be defined by the *additive* feature attribution method

 $g(z') = \phi_0 + \sum \phi_i z'$

where p is the number of variables; $z' \in \{0, 1\}^p$, and equals 1 when a variable is observed; otherwise, it equals 0

• Variable Statistic Results

Variables	\mathbf{Units}	Time-variants	\min	25%	50%	75%	max
Explained Variable							
Hourly utilization rate	%	Yes	0	4.17	31.89	58.87	97.96
Explanatory variables							
Landuse entropy	-	No	0.0376	0.2826	0.3717	0.4608	0.6305
Population density	$10^{4}/km^{2}$	No	0.0699	0.5878	1.0957	1.6643	5.4652
Road density	$\mathrm{km}/\mathrm{km}^2$	No	1.2313	6.2748	7.8526	10.0873	15.5103
Bus station density	$/km^2$	No	1.2858	22.2790	35.2672	54.1860	114.5796
Metro station density	$/km^2$	No	0	0	0	0.3676	2.0610
Pick-up density	$/km^2$	Yes	0.2743	290.3025	1390.1937	6962.3552	60680.8050
Drop-off density	$/km^2$	Yes	1.1452	387.1054	1717.4702	7419.7860	54147.2941

There are great spatial differences in built environment variables among stations. At the same time, the temporal variables vary greatly in time. These show the unbalanced spatial-temporal utilization pattern. • Feature Importance Analysis

¹Department of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, 150006, China ²Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada ³Department of Civil Engineering and Applied Mechanics, McGill University, H3A 0C3, Canada

$$\frac{!}{\cdot}\left(f_{x}\left(S\bigcup\left\{x_{j}\right\}\right)-f_{x}\left(S\right)\right)$$

RESULTS & DISCUSSIONS

> The TOP THREE important factors are pickup density, land-use and drop-off density. > The relationship between pick-up / drop-off density and utilization is *non-linear*. > Metro station density is in *positive correlation* with CS utilization. The relationships between utilization and land-use and population, road and bus station densities are *more complicated*.

- charging stations.
- charging transection data and charging price data, could be investigated. This will provide more objective and evidence-based policy indications for charging station planning.

This research work was supported by the *China Scholarship Council* (CSC). The contents of this paper reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein.

> The non-linear links of utilization and taxi demand can attribute to the *interaction of* built environment and drivers' profitoriented operating strategies.

> There are *threshold effects* of both pickup and drop-off density.

> The charging stations with entropy value over 0.42 tend to achieve high utilization. SHAP values generally decrease from *downtown* (southwest of the city) *to* suburbs (east and north of the city).

- Bus and metro station densities have different impacting mechanisms on utilization.
- Low values of road, population and bus station densities have *positive influence* on charging station utilization.
- Regions with such features above tend to be
 - 1) outer suburbs of the city,
 - 2) parks and lakes.

CONCLUSION

> The study reveals different impacting patterns of built environment and taxi demand on charging station usage. The non-linear relationships and threshold effects extend the understanding on the usage of

- \succ A more comprehensive study that incorporates more data sets, such as

ACKNOWLEDGEMENT