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Conclusion:
➢ This paper presents a novel approach for traffic speed estimation using Gaussian process regression with a rotated kernel 

parametrization. The rotated kernel is designed to model anisotropic traffic flow, allowing for capturing the directional 

dependence of traffic wave propagation.

➢ The results on two real-world datasets show that the proposed method outperforms other state-of-the-art methods in terms of 

both estimation accuracy, robustness, and computational efficiency.

➢ The proposed method is a promising approach for traffic speed estimation and capturing directional traffic flow patterns, 

providing a critical solution to showcase the full traffic information with a limited CV penetration rate.

What is Traffic State Estimation (TSE)?

➢ Traffic state estimation (TSE) refers to the inference of traffic state variables, such as density, speed, or other relevant 

variables, in a spatiotemporal domain by using partially observed traffic data from various detectors (e.g., loop detectors, 

camera, probe vehicles, connected vehicles).

Why TSE?

➢ Intelligent transportation system relies heavily on accurate traffic state information.

➢ The number of traffic detectors is limited.

➢Only Connected Vehicles (CVs) can obtain real-time information when mixed with traditional Human-Driven Vehicles 

(HDVs).

Existing TSE methods

➢Model-based TSE may not always be accurate because it may not fully capture the complexity of real-world traffic.

➢Data-driven approaches typically require a large external training dataset and a validation dataset with full information, and 

they usually do not provide uncertainty quantification.

Given: 

➢ Traffic speed                     at a 𝑛 observed locations                 ,

➢where                    represents the spatiotemporal coordinate. 

Goal: 

➢Estimate the traffic speed distribution 𝑝(𝒚∗) at unknown locations 𝑋∗.

Difficulties in common GP approaches:

➢Using the multiplication of a spatial 

kernel and a temporal kernel.

➢ Failed to capture directional 

correlation in the traffic propagation.

Rotated anisotropic kernel: 

➢ Introducing a rotation matrix 𝑅.

➢ The rotation angle 𝛼 can be learned 

from data.

➢ 𝛼 provides insight into the speed of 

congestion propagation.

Inference with variational sparse GP：

➢Estimate hyper-parameters (including kernel parameters and inducing variables) using variational sparse GP (Titsias, 2009).

➢ TSE using conditional Gaussian distribution                                   .

Multi-output GP：

➢ The TSE in multiple lanes can be naturally modeled using a multi-output GP model, also known as a co-regionalized GP.

Datasets: 

➢ The NGSIM data: trajectories extracted from video cameras on lane 2 of US highway 101, covers a longer road segment of 600 

meters and a larger time range of 2500 seconds. We extract the complete data and focus on the traffic state at a 200 × 500 

spatiotemporal grid with a resolution of 3 meters and 5 seconds.

➢ The HighD data: naturalistic trajectories recorded using drones on German highways track ID 25, extract traffic state in a 

spatiotemporal grid of size 100 × 220 with a resolution of 4 meters and 5 seconds, representing a domain of 400 meters and 

1100 seconds. 

Baseline models: 

➢Adaptive smoothing interpolation method (ASM)

➢Spatiotemporal Hankel Low-Rank Tensor Completion (STH-LRTC)

➢Gaussian process regression with standard ARD Matérn kernels (GP-ARD)

Results:

Contributions of using Gaussian Processes (GP) in TSE

➢A GP model with rotated anisotropic kernels is proposed for TSE. The rotation angle can be estimated from partially 

observed data, which offers valuable insights into the speed of congestion propagation.

➢ The proposed GP-based TSE method is a purely data-driven approach that does not require an external training dataset.

➢ The proposed model provides statistical uncertainty quantification for the estimation.

➢ The multi-output GP model is proposed for TSE on multiple lanes, which leverages the correlation between the traffic states 

of different lanes to improve TSE accuracy.

➢Extensive experiments conducted on two real-world datasets, featuring varying CV penetration rates and diverse detector 

types, showcase the superiority of the proposed GP-based TSE method. 

Assumptions:

➢We assume the observed traffic state 𝑦𝑖 consists of a ground truth value 𝑓𝑖  and an i.i.d. noise term 𝜀𝑖 :  

➢Assume 𝑓 is a function of the coordinate. Then we can impose a GP prior to the function：

➢meaning any finite collection of             at 𝑋 has a joint Gaussian distribution:

➢where the covariance matrix 𝐾 is determined by a kernel function 𝑘, such that                          . For example, a commonly 

used squared exponential (SE) kernel takes the form: 

TSE experiment with 5% observed trajectories:

➢ The congestion propagation speed estimated by GP is -19.87 km/h. In comparison, a -15 km/h was adopted in ASM 

by Treiber et al. (2011).

➢Our model is superior when the CV penetration rate is low.

TSE from loop detectors:

Uncertainty quantification: TSE in multiple lanes:

Given the observed data (e.g., from float 

vehicles, float vehicles, or detectors) to estimate 

the traffic speed at the blanked location.

Computational time:
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