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What is Traffic State Estimation (TSE)? Difficulties in common GP approaches:

» Traffic state estimation (TSE) refers to the inference of traffic state variables, such as density, speed, or other relevant
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TSE experiment with 5% observed trajectories:
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TSE from loop detectors:

(a) Real traffic speed

(b) Observed data 5% trajectories
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(a) Real traffic speed

(b) Observed data at three detectors
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variables, in a spatiotemporal domain by using partially observed traffic data from various detectors (e.g., loop detectors,
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Given the observed data (e.g., from float |
vehicles, float vehicles, or detectors) to estimate 1o Mt %
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Rotated anisotropic kernel:
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» Only Connected Vehicles (CVs) can obtain real-time information when mixed with traditional Human-Driven Vehicles > a provides insight into the speed of Uncertainty quantification: TSE in multiple lanes:
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Inference with variational sparse GP:

—————
1
N
(e)
w
(¢)]
oo

» Data-driven approaches typically require a large external training dataset and a validation dataset with full information, and
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» Estimate hyper-parameters (including kernel parameters and inducing variables) using variational sparse GP (Titsias, 2009).

they usually do not provide uncertainty quantification. “00 ____(b) Absolute residuals %
» TSE using conditional Gaussian distribution p(f., | X*,XO,yO)NN(?.*,cov(f*)) .' B ’»; | " " @ 120 B
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» A GP model with rotated anisotropic kernels is proposed for TSE. The rotation angle can be estimated from partially Multi-output GP: %300 b' 1 o AL | 2 360_Lang;__(1°)-'ndepen?ent . — _30;%
observed data, which offers valuable insights into the speed of congestion propagation. » The TSE in multiple lanes can be naturally modeled using a multi-output GP model, also known as a co-regionalized GP. 1 B ‘\ | K\; ) ' ” € 200 | ‘ ‘
» The proposed GP-based TSE method is a purely data-driven approach that does not require an external training dataset. 0 (¢) Uncertainty (std x 3) and observed trajectories | 3 1o % 420
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» The proposed model provides statistical uncertainty quantification for the estimation. 360 | i1
» The multi-output GP model is proposed for TSE on multiple lanes, which leverages the correlation between the traffic states 7::300 §24° \\ °
of different lanes to improve TSE accuracy. Datasets: S 15 120 \ l |
: . . : : . » The NGSIM data: trajectories extracted from video cameras on lane 2 of US highway 101, covers a longer road segment of 600 ‘ 0 ' ' 0 ' '
> Extensive experiments conducted on two real-world datasets, featuring varying CV penetration rates and diverse detector _J ghway _ J J ; ) ‘ ! . b /], |, S P e
o meters and a larger time range of 2500 seconds. We extract the complete data and focus on the traffic state at a 200 x 500 0 500 1000 1500 2000 2500
types, showcase the superiority of the proposed GP-based TSE method. . L . Tinee)
spatiotemporal grid with a resolution of 3 meters and 5 seconds. I
. L . . . . . Computational time:
» The HighD data: naturalistic trajectories recorded using drones on German highways track ID 25, extract traffic state in a :
PROBLEM DEFINITION spatiotemporal grid of size 100 x 220 with a resolution of 4 meters and 5 seconds, representing a domain of 400 meters and NGSIM HighD
1100 seconds. Rate ASM STH-LRTC GP-rotated ~ P-GP-rotated Rate ASM STH-LRTC GP-rotated ~ P-GP-rotated
Glven: _ _ 0.05  7.40 (0.57) 908.21 (38.61)*  27.30 (2.92)  3.84 (0.27) 0.05  0.46 (0.03) 67.61 (3.38) 11.97 (1.89)  0.35 (0.05)
5 Traff dy.={u}r, at o d locations X, — Baseline models: 0.1 1418 (0.43) 850.90 (19.61)®  77.54 (4.68)  9.25 (0.42) 0.1 087 (0.04) 823.65 (1074  12.54 (029)  0.42 (0.05)
raffic speed Y., =1¥isi=1 at a n observed locations ={x,} 7", > Adapt thing int Iati thod (ASM 0.2  26.77 (0.92) 206.72 (1.85) 153.07 (3.67)  13.43 (1.68) 0.2 1.67 (0.07) 54.29 (1.39) 19.86 (0.40) 0.83 (0.16)
> where x;=|s;,t;|' represents the spatiotemporal coordinate aptive smoothing interpolation method { ) 0 AR Toon (LT 0LeT T T @1) 0.3 2.30(0.05 >1.46 (1.06) 29.78 (0.66) - 1.25 (0.15)
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Goal:

» Gaussian process regression with standard ARD Matérn kernels (GP-ARD) 2 Delay-embedding lengths 7o = 50, 7 = 50.

» Estimate the traffic speed distribution p(y.) at unknown locations X.. ® Delay-embedding lengths 75 = 60, 7, = 50.

(b) Observed data 5% trajectories

(a) Real traffic speed

Results:
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i) nEEat M I A} 005  559(036) 7.81(0.56) 5.51(136) 7.94(238) 6.02(036) 8.62(0.56) 4.85(0.31) 6.74(0.56) 4.97(0.29) 6.74 (0.47) > This paper presents a novel approach for traffic speed estimation using Gaussian process regression with a rotated kernel
| i in Iy /| \ i 0.1 442 (0.17)  6.28(0.27) 4.19(1.39)  7.43(5.62) 4.35(0.30) 6.42(0.58) 3.82(0.22) 5.44(047) 3.79(0.13) 5.19 (0.22) parametrization. The rotated kernel is designed to model anisotropic traffic flow, allowing for capturing the directional
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> We assume the observed traffic state y; consists of a ground truth value f; and an i.i.d. noise term ¢; ;: ¥: = fi + ¢ 0.5 1.99(0.06)  3.75(0.09)  1.43(0.04) 246 (0.11)  1.67(0.04) 2.96(0.10) 158 (0.04)  2.71(0.09)  1.71(0.04)  2.98 (0.07) oth estimation accuraey, robus .n.ess, and computa |oea eticie cy. | S |
_ _ _ _ _ _ » The proposed method is a promising approach for traffic speed estimation and capturing directional traffic flow patterns,
> Assume f is a function of the coordinate. Then we can impose a GP prior to the function: f(x) ~ GP(u,k) > The congestion propagation speed estimated by GP is -19.87 km/h. In comparison, a -15 km/h was adopted in ASM providing a critical solution to showcase the full traffic information with a limited CV penetration rate.
> meaning any finite collection of f<R" at X has a joint Gaussian distribution: £f=f(X)=[f(x.),,f(x.)] ~M0,K) by Treiber et al. (2011).
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» where the covariance matrix K is determined by a kernel function k, such that K [i,j] = k(x,,x;) . For example, a commonly » Our model is superior when the CV penetration rate is low. AN N UAL M E ETl N G e . -
used squared exponential (SE) kernel takes the form:kSE(xi,xj)zerexp<— %egllxi—le|2> ¢
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