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Introduction

Using the least-squares (LS) regression to calibrate single-regime speed-density models is biased

towards the region with more data points, as shown in the example in Figure 1. The biased

calibration is caused by the autocorrelations in the regression residuals (LS estimation requires

residuals to be i.i.d.). Therefore, we propose a better calibration method for single-regime speed-

density models by modeling the covariance of residuals via a zero-mean Gaussian Process (GP).
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Figure 1. An illustration of the biases in the least-squares regression. (a) Speed-density data and the least-squares

fit of the Greenshields model; (b) Regression residuals and the data histogram in terms of density.

Research highlights

We provide a statistical explanation for the biases when using the least-squares in

calibrating speed-density models.

We propose to use a GP to resolve the biased calibration problem, and our method unites

the existing LS and weighted least squares (WLS [2]) methods into a generalized

framework.

We introduce two solutions (sparse GP and MCMC sampling) to estimate the proposed

GP-based model, making our method is scalable to large datasets and providing posterior

distributions (uncertainty quantification) for the estimation.

The proposed GP regression can be used as a new non-parametric speed-density model.

Gaussian Process regression

For a list of n observations for speed v = [v1, v2, · · · , vn]> and density k = [k1, k2, · · · , kn]> at a
certain road segment. We assume these paired observations can be explained by an unknown

function f and a random noise term

vi = f (ki) + εi.

Conventional approaches replace the unknown function with a given-form single-regime speed-

density model m(k) and calibrate model parameters by the LS method. However, as show in
Figure 1, the correlations in regression residuals violate a fundamental assumption—independent

noise—in the LS estimation, causing biases in parameter calibrations. Therefore, we impose a GP

prior to the unknown function f :

f (k) ∼ GP (m(k), c (k, k′)) ,

c(k, k′) = σ2 exp
(

−(k − k′)2

2`2

)
,

where the mean function m(k) is a speed-density model; the covariance function (a.k.a. kernel
function) c (k, k′) captures the covariance of the residuals.

Parameter estimation

Maximum marginal Likelihood Estimation (MLE)

Denote byβ the parameters in the mean function and by θ = {β, `, σ2, σ2
ε} the parameters of the

GP. The Maximum marginal Likelihood Estimation (MLE) is equivalent to minimizing the following

negative log marginal likelihood with respect to θ:

− log p(v|θ) = − log N
(
v|m(k), Cnn + σ2

εI
)

= 1
2
(v − m(k))> (

Cnn + σ2
εI
)−1 (v − m(k)) + 1

2
log(|Cnn + σ2

εI|) + n

2
ln(2π).

(1)

This minimization can be solved numerically by gradient-based methods.

Sparse GP for large-scale problems

The GP regression requires O(n3) time complexity and the O(n2) storage complexity. Therefore,
we use the sparse GP that approximates the covariance matrix using a small set of u auxiliary
inducing points, the function covariance matrix is approximated with a low-rank representation

Cnn ≈ CnuC−1
uuC>

nu, and the inverse and the determinant in Eq. (1) can be simplified:(
CnuC−1

uuC>
nu + σ2

εI
)−1 = σ−2

ε I − σ−4
ε Cnu

(
σ−2

ε C>
nuCnu + Cuu

)−1 C>
nu,

|CnuC−1
uuC>

nu + σ2
εI| = |σ−2

ε C>
nuCnu + Cuu||C−1

uu |σ2n
ε .

The time and storage complexity of estimating a sparse GP using the MLE reduces to O(nu2).

MCMC for variational sparse GP

We adopted a fully Bayesian estimation based on an MCMC sampling scheme [1]. Because:

A long-tailed distribution (e.g., Student-t) for the noise ε is more robust to outliers, which
requires MCMC to solve.

Traffic practitioners often have strong prior knowledge about model parameters (e.g., free

flow speed and jam density).

Knowing the uncertainty (posterior distribution) of parameters is much more interesting than

a point estimation.

Comparison with other calibration methods
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(a) Speed-density models calibrated by LS, WLS, sparse

GP by MLE, and the mean of MCMC sampling for

variational sparse GP.
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(b) The RMSE of the four calibration methods on the six

single-regime models at different density groups.

Figure 2. Comparison with other calibration methods on the GA400 dataset.

Posteriors of the MCMC estimations
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Figure 3. MCMC sampling traces and the posterior distributions of parameters for the Underwood model.
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(a) Posterior distributions of speed-density functions.
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(b) Parameters of the Greenshields model calibrated by

the four methods under different sample sizes. The GP

MCMC with a prior is more robust under different

sample sizes.

Figure 4. Posteriors of the MCMC estimations
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Code available at https://github.com/chengzhanhong/gaussian_process_calibration.
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