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Example: abnormal metro demand forecasting

(a) Guangzhou Tianhe Sports Center Metro Station
®

2000 -

WA

0 - f
2017-07-31 08-01 08-02 08-03 08-04 08-05 08-06 08-07
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10000 (b) Seoul Subway Sports Complex Metro Station _ Forecast abnormal boarding demand
é mood e Important:
é.: 5000 1 * It helps operators increase supply and
2 2500 - prevent dangers.
T ok -/JLM It helps passengers plan their trips.

2023-03-28 03-29 03-30 03-31 04-01 04-02 04-03 04-04

Difficult:

Irreqular surges of metro passenger boarding demand. _
* Irreqular, occasional, often abrupt;

« Require to predict far in advance (hours).
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Example: abnormal metro demand forecasting

(a) Guangzhou Tianhe Sports Center Metro Station
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10000 (b) Seoul Subway Sports Complex Metro Station Forecast abnormal boarding demand
—— Boarding ’O
75001 — Alighting Important:

O Peaks of abnormal demand

It helps operators increase supply and
prevent dangers.
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It helps passengers plan their trips.

Difficult:
* Irreqular, occasional, often abrupt;
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Irreqular surges of metro passenger boarding demand.

« Require to predict far in advance (hours).
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The "destination-origin” matrix in metros
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= S Return \/
< 60 The next trip
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20 Two findings

ok ‘ ||  The next boarding station is often the
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Next boarding station

previous alighting station.
The probabillity of the next boarding station given the * Long-range correlations and causalities

current alighting station. (In Guangzhou metro smart card e>f'5t n the station boarding and
data July 21-28 2017, alighting passenger flow.
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Qutlines

Goal: forecasting method for metro station passenger demand under abnormal events.

Part 1. Abnormal passenger demand identification

Part 2. Joint forecasting of boarding and alighting flows

Part 3. Results and analyses

Part 4. Discussion & conclusion
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Abnormal passenger demand identification

We use Robust Principal Component Analysis (RPCA) [l to detect anomalies in passenger flow.

3500
A modification of PCA that
. 3000
works well on data contain
outliers.
2500
£
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minimize | L||« + AllS|1 . 2000 1
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[1] Wright, J., Ganesh, A,, Rao, S., Peng, 1000
Y., & Ma, Y. (2009). Robust principal
component analysis: Exact recovery of
corrupted low-rank matrices via convex 500
optimization. Advances in neural
information processing systems, 22.
0

Sat Sun Mon Tue Wed Thu Fri
Time in a week

The abnormal boarding demand (marked in red circles) identified by RPCA for
the Guangzhou Tianhe Sports Center metro station.
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Independent forecast of alighting and boarding flow
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Output layers + denormalization

Autoregressive forecast
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Forecasting models

[bt—N—I-la T Jbt]

Shifted boardi
¢

Output layers + denormalization

Autoregressive forecast
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Normalization + feature embeddings

t
Boarding flo
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Forecast abnormal metro passenger demand

Build independent forecasting
models for boarding demand and
alighting flow.

Boarding demand is more
important, and the alighting flow

forecast is sometime unnecessary.

Failed to leverage the long-range
A&B correlations.
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Forecasting models

Joint forecasting of boarding and alighting flows (Approach 1)

Key argument

Output layers + denormalization * We should always forecast the alighting
and boarding flow together.

1
Method
Autoregressive forecast . . .
» Using a multivariate forecasting model.

ti +n « Many models, such as LSTM and VAR,

Nln.or.e'a ' c.gs can be used as the autoregressive core.

Concat alighting and b flow

at N B Gt 1
bl
bf N bf 1

Approach 1: multivariate forecasting
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Forecasting models

Joint forecasting of boarding and alighting flows (Approach 2)

[bt—N—l—la e :bt]
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Transformer decoder

S

-

t?; ti +n 1‘ tz' tz' :|— n
Normalization + feature embeddings
t t
Alighting flow Boarding flo
[at—NJ"' )at—l] [bt—Ns"' Jbt—l]

Cheng et al.

Forecast abnormal metro passenger demand

Key argument

* We should always forecast the alighting
and boarding flow together.

Method
+ Explicitly models A&B correlations.

» Good interpretability, but conventional
models do not work.

« Transformer®! is an ideal way to do it.

[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you

need. Advances in neural information processing systems, 30.
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Rotary Position Embedding, RoPEP!

Absolute positional embedding
@t N1, 5G] bt—N41,- -, by

ft:te{q,k,fu}(mia i) = Wt:te{q,k,v}(mi +p;)
pio: = sin(k/10000%%/7)
Pioti1 = cos(k/100002%t/ %)

Shifted alighting flow
t

Shifted boarding fl
t

Output layers + denormalization

t

. ’ RoPE (a relative positional embedding)
Transformer decoder. L
,_ folxy, m) = (W x,,)e"
ti t; +n 1' t.z t; +n Q( " ) (Wq m) in0 |
T, N) = T,)e .
Normalization + feature embeddings Ji(@n,n) = (Wyn)
: : (Jo(@msm), fx(@n, 1)) = g(@m, @y m —n)
Alighting flow Boarding flo
* We suspect the A&B correlation
(Grn, - ap ] B, ba] depends on their relative positions.

[3] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., & Liu, Y. (2024). Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing,
568, 127063.
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Results
Joint vs independent forecast
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Joint vs independent forecast
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Quantitative results

Forecast performance in Guangzhou and Seoul Metros

Guangzhou Seoul
Inflow Outflow Inflow Outflow
Normal Abnormal Total |[Normal Abnormal Total |Normal Abnormal Total | Normal Abnormal Total
LSTM MAE |43.1 393.6 433 |43.6 3433 437 |44.6 |[435.0 46.1 |51.2  467.3 52.4
joint 1 WMAPE|[10.7% |41.4% 10.8% [10.9% 35.5% 10.9% [5.5% | 33.1% 57% |6.3% 36.4% 6.5%
LSTM MAE |48.8 [428.1 49.0 |41.7 352.1 419 (484 |[483.6 50.2 |51.8 4732 53.0
independent WMAPE|12.1% [45.0% 12.2% (10.4% 37.0% 10.4% [6.0% | 36.4% 6.2% |6.4% 36.6% 6.6%

Transformer MAE [40.2  366.6 40.4 |40.5 319.5 40.6 |(47.2 4289 48.7 |52.1 4421 53.2
join 1 WMAPE|10.0% 38.6% 10.0% (10.1% 33.0% 10.1% |5.9% 32.4% 6.0% |6.5% 34.4% 6.6%
Transformer MAE |41.7 352.1 419 1428 348.1 429 |48.5 404.5 49.9 |53.1 458.1 54.2
join 2 WMAPE|10.4% | 37.0% 10.4% [10.7% 36.0% 10.7% [6.0% |30.5% 6.2% |6.6%  35.4% 6.7%
Transformer MAE [48.8 |424.8 49.1 146.5 363.0 46.5 |52.1 488.8 53.8 [54.8  461.1 56.0
independent WMAPE|12.2% |44.7% 12.2% |11.6% 37.6% 11.6% |6.5% |36.8% 6.7% |6.8%  35.6% 6.9%
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More examples of joint forecast
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Interpreting forecast results
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The attention weights i(n the forecast of Guangzhou Luogang station

Cheng et al. Forecast abnormal metro passenger demand Transit Data 2024, London



Forecasting models Results 16/17

Interpreting forecast results
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Discussion

Contributions

= We propose a simple and effective way (always use the joint forecast) to boost the metro demand
forecasting under abnormal situations.

= We developed a Transformer model to understand how deep-learning models capture the A&B
correlations.

= We address a difficult but useful problem in transit operation (forecast abnormal metro demand with
long lead time).

Limitations

= Holidays and events data, could further enhance the forecast.

= How to quantify the uncertainties in the forecast?

= Using likelihood as a loss function (probabilistic forecasting), on going work. A preprint coming soon.

Thank you! Dr. Zhanhong Cheng
Questions? zhanhong.cheng@mcgill.ca

https://chengzhanhong.github.io/
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