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Example: abnormal metro demand forecasting

Irregular surges of metro passenger boarding demand.

Forecast abnormal boarding demand 

Important：

• It helps operators increase supply and 

prevent dangers.

• It helps passengers plan their trips.

Difficult：

• Irregular, occasional, often abrupt;

• Require to predict far in advance (hours).
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The ”destination-origin” matrix in metros

Metro

station

Activities

(work, shopping…)

This trip

The next trip

Come

Return

Two findings

• The next boarding station is often the 

previous alighting station. 

• Long-range correlations and causalities 

exist in the station boarding and 

alighting passenger flow.

The probability of the next boarding station given the 

current alighting station. (In Guangzhou metro smart card 

data July 21-28, 2017.)
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Outlines

Goal: forecasting method for metro station passenger demand under abnormal events.

Part 1. Abnormal passenger demand identification 

 For better evaluation.

Part 2. Joint forecasting of boarding and alighting flows

 The ABTransformer and other approaches.

Part 3. Results and analyses

 How the joint forecast approach works.

Part 4. Discussion & conclusion
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Abnormal passenger demand identification

We use Robust Principal Component Analysis (RPCA) [1] to detect anomalies in passenger flow.

[1] Wright, J., Ganesh, A., Rao, S., Peng, 

Y., & Ma, Y. (2009). Robust principal 

component analysis: Exact recovery of 

corrupted low-rank matrices via convex 

optimization. Advances in neural 

information processing systems, 22.

A modification of PCA that 

works well on data contain 

outliers.

The abnormal boarding demand (marked in red circles) identified by RPCA for 

the Guangzhou Tianhe Sports Center metro station.
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Independent forecast of alighting and boarding flow

• Build independent forecasting 

models for boarding demand and 

alighting flow.

• Boarding demand is more 

important, and the alighting flow 

forecast is sometime unnecessary.

• Failed to leverage the long-range 

A&B correlations.
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Joint forecasting of boarding and alighting flows (Approach 1)

Approach 1: multivariate forecasting

Key argument

• We should always forecast the alighting 

and boarding flow together.

Method

• Using a multivariate forecasting model.

• Many models, such as LSTM and VAR, 

can be used as the autoregressive core.
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Joint forecasting of boarding and alighting flows (Approach 2)

Key argument

• We should always forecast the alighting 

and boarding flow together.

Method

• Explicitly models A&B correlations.

• Good interpretability, but conventional 

models do not work.

• Transformer[2] is an ideal way to do it.
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[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you 

need. Advances in neural information processing systems, 30.
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Rotary Position Embedding, RoPE[3]
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Absolute positional embedding

RoPE (a relative positional embedding) 

• We suspect the A&B correlation 

depends on their relative positions.

[3] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., & Liu, Y. (2024). Roformer: 

Enhanced transformer with rotary position embedding. Neurocomputing, 

568, 127063.



11/17

Cheng et al. Transit Data 2024, LondonForecast abnormal metro passenger demand

Joint vs independent forecast

The forecast of Guangzhou Luogang station
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Quantitative results

Forecast performance in Guangzhou and Seoul Metros

Background    |     Anomaly identification     |     Forecasting models |     Results     |     Discussion 



14/17

Cheng et al. Transit Data 2024, LondonForecast abnormal metro passenger demand

More examples of joint forecast
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Interpreting forecast results
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The attention weights in the forecast of Guangzhou Luogang station
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Interpreting forecast results
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The attention weights in the forecast of Seoul sports complex
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Discussion

Contributions

▪ We propose a simple and effective way (always use the joint forecast) to boost the metro demand 

forecasting under abnormal situations.

▪ We developed a Transformer model to understand how deep-learning models capture the A&B 

correlations.

▪ We address a difficult but useful problem in transit operation (forecast abnormal metro demand with 

long lead time).

Limitations

▪ Holidays and events data, could further enhance the forecast. 

▪ How to quantify the uncertainties in the forecast? 

▪ Using likelihood as a loss function (probabilistic forecasting), on going work. A preprint coming soon.

Thank you!

Questions? zhanhong.cheng@mcgill.ca
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https://chengzhanhong.github.io/

Dr. Zhanhong Cheng
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